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Abstract Accurate and reliable groundwater level
prediction is critical in water resource management. This
study aimed to develop two methods to predict 46 months
of groundwater level fluctuation. The Multiple Linear
Regression (MLR) and aiﬁciell Neural Network (ANN)
methods were compared for predicting groundwater levels
at the monitoring wells of Ubung and Ngurah Rai in
Denpasar Region, Bali, Indonesia. The significant
hydrometeorological time data inputs were
barometric pressure, evaporation, temperature, wind, bright
sunshine, rainfall, and groundwater level. Moreover, the

series

model performance was assessed statistically and
graphically. The groundwater levels predicted by ANN
were more consistent with the observed than the

MLR-predicted levels at all sites. MLR had a mean square
error (MSE) of 0.6325, root mean square error (RMSE) of
0.7953, and mean absolute error (MAE) of 06122 in the
Ubung monitoring well, while ANN models obtained an
MSE of 0.143, RMSE of 0.379, and MAE of 0.311. For the
Ngurah Rai monitoring well, MLR models obtained an
MSE of 13406, RMSE of 1.1579, and MAE of 09152.
ANN models obtained an MSE value of 0.0483, RMSE of
0.2198, and MAE of 0.1266.

Keywo rds Groundwater level, prediction,
hydrometeorological, multiple linear regression, artificial

neural network

1. Introduction

Groundwater is a significant source of supplies for
residential, industrial, and agricultural use. It is the only
reliable source of supplies in certain areas and preferred due
to its near-ubiquitous nature in other areas. However,
increased urbanization and water consumption have caused
over-exploitation of groundwater. This caused adverse
environmental consequences, such as significant water level
decrease, well desiccation, stream and lake shrinkage, and

reduced well yields. This also caused water quality
degradation, specifically in developing countries [1, 2],
including Indonesia, namely in Denpasar City, an urban area
in Bali Province. Groundwater level forecasting is critical for
sustainable water management [3]. Although complex and
nonlinear, the groundwater level is affected by various
hydrometeorological elements such as barometric pressure,
evaporation, temperature, wind, bright sunshine, and rainfall.
It is critical to establish accurate models to estimate
groundwater levels [4]. Modeling groundwater fluctuations
is intricate because groundwater is concealed and has
considerable temporal and spatial variability. Groundwater
flow modeling methods exist for several hydrogeological
conditions. Data for process-based models that impersonate
groundwater changes are immense, complicated, or costly to
gather, combined with limited field data [5, 6].

The principal source of information on hydrological
pressures acting on the aquifer is groundwater level readings
from observation wells. For long-term management and
protection, systematic water level observations offer crucial
data needed to assess changes in groundwater resources,
develop trend models and forecasts, design, implement, and
monitor programs [7]. Groundwater fluctuations are the rise
and fall of levels caused by natural and human-induced
hydrological processes. Therefore, it 1s critical to understand
these events because multiple mechanisms simultaneously
require accurate observations. The factors inducing
groundwater level variations are urbanization, seismicity,
hydrometeorology, such as barometric pressure, evaporation,
temperature, wind, bright sunshine, rainfall, tidal influences,
and external stress [8].

Predicting groundwater level reactions is crucial for
effective planning and management. These strategies have
been developed to prevent groundwater mismanagement and
over-exploitation. It is difficult to simulate groundwater
level fluctuations due to the complexity and non-linearity.
Therefore, conceptual and process-based lremds exist for
modeling groundwater flow in various hydrogeological
settings. The data requirements for process-based models
used to simulate groundwater changes are vast and generally




difficult or costly to collect [Sab]. Although there are
tremendous efforts and resources, distributed numerical flow
models' prediction accuracy has not improved enough for
diverse water management challenges [9]. This necessitates
a dynamic prediction model for handling persista trends
and time-variant behavior. Such instances favor empirical
models such as regression and Artificial Neural Network
(ANN) models that require lesalla and are less expensive.
Although they cannot manage non-linearity between model
mputs and outputs, Multiple Regression Linear (MLR)
models are commonly used in hydrological studies [10, 11].

Some hydrologists or hydrogeologists have used ANN
tools and statistical techniques such as MLR to predict or
forecast water resources systems over the last decade
because they are simple and profitable [12]. FHLR models
show how the correlation between observation and response
variables works by adjusting a linear equation to the data
collected [13]. Moreover, it produces valuable findings with
less data, work, and cost-effectiveness [12]. The models
allow for unlimited inca)endcm variables. Although MLR
models cannot handle non-linearity between model inputs
and outputs, they have been widely used in hydrological
studies due to their ease of use and parameter interpretation
[11]. Hc)va.(cr, the ANN approach is adapted to modeling
nonlinear and dynamic systems such as water resources. It is
advantageous over previous techniques because it does not
necessitate a detailed mathematical description of underlying
processes. Additionally, ANN models anticipate various
hydrological problems after adequate training.

Studies on MLR application in groundwater level
arecalsling are limited. Hodgson [14] used MLR to predict
water table responses in the South African Vryburg aquifer
using precipitation and pumping as input factors. Similarly,
Shao and Campbell [15] utilized regression to model
groundwater trends in Western Australia.

The ASCE Task Committee findings contain an in-depth

examination of the application of ANN to hydrology[16,17].

In line with this, ANN has effectively predicted groundwater
levels in -onfined aquifers [18-24]. The networks were
provided monthly water depth. precipitation, temperature,
river water level, and evapotranspiration. Uddameri [25]
@hployed regression and ANN approaches to predict
piezometric levels in a deep val in South Texas. Moreover,
Sahoo and Jha [26] compared MLR and ANN for simulating
transient groundwater levels in an unconfined aquifer
system.

Nc) previous study compared the predictive ability of the
MLR and ANN techniques in simulating groundwater levels

using limited hydrometeorological time series data on
barometric pressure, evaporation, temperature, wind, bright
sunshine, and rainfall with data screening tests. Examples of
filtering tests are trend absence, stationary, persistence,
outlier, and data C()nsancy tests. Therefore, this study
aimed to examine how two data-driven techniques, such as
MLR and ANN, could forecast the Spatio-temporal
distribution of water levels in groundwater basins utilizing
restricted hydrometeorological time-series data. The MLR
and ANN modeling techniques were used, while
hydrometeorological data were selected as as model inputs.
Therefore, it presents a rigorous scientific technique for
comparing two data-driven methodologies for simulating
groundwater levels using filtered hydrometeorological data.

2. Materials and Methods

2.1. Study Area

The study area covers 3142 km? and lies between
08°35'31" and 08°44'49" south latitude and 115°12'09" and
115°04'39" east longitude in Denpasar, Bali, Indonesia [27].
The northern Denpasar's aquifer is unconfined and highly
productive, with a shallow groundwater level running
through fissures and crevices between grains [28]. The
Denpasar-Tabanan groundwater basin includes this aquifer
[29]. It is a wolcanic-sediment-covered terrain with
permeable alluvium and young volcanic sediments. In
contrast, lower quaternary and tertiary sediments have a
wide range of permeall:nty according to the formation.
Denpasar is composed of Miocene to Pliocene volcanic
products and marine sediment as basement rock, overlain
by a thick pyroclastic flow. Also, it has volcanic products
and mudflow that resulted from intense volcanic activity
during the Pleistocene to Holocene periods of the
Quaternary period [30]. Figure 1 shows the study area.

2.2. Data Collecting o
1

Groundwater data on geography, geology, topography,
d hydrogeology were provided by the Bali Province
Department of Manpower, Energy, and Mincrancst)urccs.
Hydrometeorological data was provided byne Bali-Penida
River Basin Department and the Meteorological,
Climatological, and Geophysical Agency III Bali Province.
The Polygon Thiessen method converted point precipitation
data to area precipitation.
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Figure 1. Study area

The hydrometeorological data were adjusted because
groundwater level data is only available for 46 months. This
study used hydrometeorological such as barometric pressure,
evaporation, temperature, wind, bright sunshine, rainfall, and
water table data from January 2017 to December 2019 and
Emary to October 2015. Monthly hydrometeorological and
groundwater level data for the 2017-2019 period were used
to train or calibrate the two observation wells for MLR and
ANN models. The ten months from January to October 2015
were used for @Bting or verification. Table 1 shows the
location of each well.

Table 1. Position of observation well

Well Number Coordinate
Ubung SP No. 08° 43° 56,3” LS;
04/DP/Distam 115° 10" 36,4” BT
Ngurah Rai SP No. 08° 39° 05,0 LS;
02/DP/Distam 115° 13" 23,6” BT

2.3. Hydrometeorology Data Testing

Hydrometeorological data is time sequence data that
must be tested before being used in the analysis. This study
collected hydrometeorological data on rainfall, evaporation,
humidity, bright sunshine, temperature, wind speed, air
pressure, and groundwater level fluctuations. The testing
phase, also called data screening, examines and sorts data to
obtain hydrometeorological data reliable for analysis to
draw good conclusions [31]. The hydrometeorological data

test comprises the consistency,
stationary, and persistence tests.

trend absence, outlier,

2.3.1. Consistency Test

A data consistency test examines the principality in the
data obtained using the Rescaled Adjusted Partial Sums
(RAPS) method. This method could be used to investigate
the variance of time series data trends and locate trend
inflection points, shifts, data clustering, irregular
fluctuations, and periodicities [32-34]. It eliminates the
effects of different data units and random analysis errors
[34].

2.3.2. Trend Absence Test

This test determines the randomness or absence of trends
from periodic series data using the Spearman Method's
Statistical Correlation Ranking Method. This approach
correlates time and variant from hydrological variables [31].

2.3.3. Outlier Test

An abnormality or outlier test determines the maximum
and minimum data usability from an existing data set [35].
This test is based on data deviating from the lower and
upper threshold to be eliminated or adjusted to the threshold
value.

2.3.4. Stationary Test

The stability of wvariant values and averages of
hydrometeorological data was determined with stationary




tests. This study conducted a stationary test with variant
stability test (F-Test) and average stability test (t-Test).
When the calculated value is greater than the critical value,
the data tested does not come from the same population or
1s not stationary at a certain significance level. Variant
values are unstable and nonhomogeneous when test results
show that the null hypothesis is rejected [31].

2.3.5. Persistence Test

Persistence tests as a requirement in frequency analysis
by testing the presence or absence of dependence on each
data were used. When there is no dependency on each value,
the data could be used in frequency analysis. The magnitude
of the correlation coefficient should be considered [31].

2.4. Modelling

The hydrometeorological data testing resulted in new
variables that were used to model MLR and ANN.

2.4.1. Multiple Linear Regression (MLR)

MLR expresses the linear connection between a
dependent and several independent variables [14][36]. It
uses least squares to fit the model, minimizing the sum of
squares of observed and predicted values. It is expressed as
(1)

Y=a+ /X +Xy+ARX3+...+ Xy +e (1

where Y is the dependent variable, Xi is the independent
variable, i are the predicted parameters, and & is the error
term.

2.4.2. Classic Assumption Test

The value of Y or independent variable to estimate the
value associated with X as a dependent variable should be
determined to estimate cause-and-effect relationships.
Regression analysis helps explain and test the relationship
between independent variables into one dependent variable.
Multiple regression methods could be an unbiased
estimation tool to meet Best Linear Unbiased Estimation
(BLUE) requirements. Therefore, the first classic
assumption test is performed before the hypothetical test
meets BLUE needs. Classical assumptions comprise
multicollinearity, normality, autocorrelation,
heteroscedasticity tests [37].

The normality test checks whether dependent and
independent variables in regression are normally distributed.
A good regression model is normally distributed data or
E)se to normal. Multicollinearity arises when all or some
independent variables in a regression model are perfectly
aeeu‘. Therefore, the multicollinearity test checks whether
two or more independent variables are highly correlated in a
regression model. This means that an independent variable
could be predicted from another independent variable in a
regression model. In this case, a decent regression model
the wvariables. Durbin Watson

and

does not correlate with

statistical tests are used to find a serial correlation or
autocorrelation in time series data. Serial correlation is a
relationship between two observations for a variable. In
contrast, the heteroscedasticity test checks whether the
residual variance of one observation differs from another in
the gradient model. The variance of one residual
observation remains the same, while the other 1s
heteroscedastic. Therefore, a decent regression model has
homoscedasticity [37].

2.4.3. Artificial Neural Network (ANN)

ANN is a massively parallel distributed information
processing system such as biological neural networks [38].
The architecture of a neural network represents connections
between nodes and the activation function [39]. It
comprises simple, highly interconnected processing
components, such as neurons. The model is a black box of
equations that calculate output based on input values [40].

According to Haykin [38], a neuron k may be
mathematically described as (2) and (3):
m
up = Z WX (2)
j=1
Y = oluy, +&() (3)

The bias bk increases or lowers the net input of the
activation function. x,, Xa, ..., X are the inputs, wi;, Wia, ...,
Wikm are the weights of the neuron k, uy is the linear
combiner output due to input signals, ¢ is the activation
function, while y is the output signal of the neuron.

Back-propagation is a popular ANN learning algorithm
n multilayered feed-forward networks. The
back-propagation networks process data from the input to
the output layer through the hidden layer. Finding optimal
weights is the goal to get close to targets [38].

This study used feed-forward bilﬂpl‘()pilgilli()l‘] neural
network (FFBFNN) architecture and gradient descent with
momentum and adaptive learning rate back-propagation
(traingdx) for training algorithms. The aim was to find the
best algorithm for predicting groundwater levels over the
study field. In the hidden layer, logistic sigmoid nonlinear
function (logsig) and output layer, linear transfer function
(purelin) was used as an activation function.

24.4. Model Performance

The quantitative permemce of MLR and ANN models
was judged using four statistical metrics or goodness-of-fit
criteria, including coefficient determination (R?), Root Mean
Squared Error (RMSE), Mean Squared Error (MSE), and
Mean Absolute Error (MAE).

3. Results and Discussion

3.1. Data Quality Test




Before the analysis to obtain a model of groundwater
level fluctuations, available meteorological data should be
tested statistically hydrologically [31]. In this study, data
quality testing used outlier or abnormality, trend absence,
persistence, stationary, and consistency tests. The test
results are in Table 2. Based on the data quality test, the
three data eliminated are humidity, bright sunshine, and
wind speed data not used in subsequent analysis.

Groundwater level fluctuation data was generated or
predicted to extend the data of fluctuations at Ubung and
Ngurah Rai monitoring wells. The two monitoring wells
were selected due to their appropriate position to represent
fluctuations in groundwater levels in the Denpasar City
aquifer. The groundwater level fluctuations were predicted
by comparing MLR and ANN.

Table 2. Hydrometeorology Data Quality Testing Recapitulation

3.2. Multiple Linear Regression

The prediction model with MLR approach produced the
following equations:
Ubung monitoring well equation model:

GWL =-592318,829+587,063BP

4
+33,579E+ 467,869T + 5,406P + & @

The model equation of Ngurah Rai monitoring well is
GWL =-263447,741+ 268,001BP )

~3,916E—4,953T +9,958P + &

Where, GWL = groundwater level, BP = barometric pressure,
E = evaporation, T = temperature, P = precipitation.

Both models were obtained through the analysis stages of
having qualified data normality for three years based on the
Kolmogorov-Smirnov and the Shapiro-Wilk tests, where all
8[;1 has a p-value > 005 value. The accuracy of the
a;rcssion function in estimating the actual value is
measured fJm its goodness of fit. Statistically, this could be
calculated from the coefficient of determination (R?), F, and
the statistical value t.

Regression models at Ubung monitoring wells produced a
coefficient of determination (R?) of 0.606. This means that

Data Data Quality Test
Outlier Consistency | Trend Absence Persistence | Stationary | Information
Evaporation (E) No outlier Consistent Independent Independent Stable Ok
Barometric pressure (BP) No outlier Consistent Independent Independent Stable Ok
Temperatures (T) No outlier Consistent Independent Independent Stable Ok
Humidity (H) No outlier Consistent Dependent Independent | Unstable Not Ok
Wind speed (WS) No outlier Consistent Independent Independent | Unstable Not Ok
Bright sunshine (BS) No outlier Consistent Dependent Independent Stable Not Ok
Rainfall (rain gauge Ngurah Rai) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Sanglah) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Sumerta) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Kapal) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Buagan) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Sading) No outlier Consistent Independent Independent Stable Ok
Rainfall (rain gauge Penatih) No outlier Consistent Independent Independent Stable Ok
60.6% of groundwater level could be explained by

parameters of barometric pressure (BP), evaporation (E),
temperature (T), and precipitation (P). In contrast, the rest is
explained by other variables estimated to be due to the
exploitation of groundwater by the community.
Simultaneous tests obtained Feyn = 11.905, with probability
p-value 0000 (< 005). This indicates an influence or
contribution between variables of barometric pressure,
evaporation, temperature, and precipitation simultaneously
and significantly to fluctuations in groundwater levels.
Therefore, regression models on Ubung monitoring wells
could be used to predict changes in groundwater levels.
Partial or individual tests obtained a p-value of precipitation
of 0.361 (0.361 > 0.05). It means no significant relationship
between  precipitation  parameters and  fluctuating
groundwater levels. In contrast, parameters of barometric
pressure, evaporation, and temperature have a partially
meaningful relationship to fluctuating groundwater levels.
Linear regression models are good when they meet classical
assumptions of normally distributed residuals with no
multicollinearity, heteroskedasticity, or autocorrelation. The
analysis results showed that the regression model for the
Ubung monitoring well met the entire classical assumption
test. Therefore, the groundwater level fluctuation model
could be used with unbiased estimation. The developed




regression model was tested using a calibration test based on
data for 36 months from 2017 to 2019 and a verification test
for ten months data between January and October 2015 with
RMSE, MSE, and MAE. The test obtained an MSE value of
0.6325, RMSE of 0.7953, and MAE of 0.6122. The smaller
MSE, RMSE, and MAE values show a good predictive value
in the calibration process. The verification process obtained
an MSE of 1.6415, RMSE of 1.2812, and MAE of 0.8384.
This implies a relatively high error rate between the
observation and prediction GWL values. Figure 2 shows the
comparison between the GWL observation and prediction at
the calibration stage and Figure 3 at the verification stage in
Ubung monitoring well.

The regression model at Ngurah Rai monitoring well
produced a coefficient of determination (R?) value of 0.257.
This means that only 25.7% of groundwater level could be
explained by barometric pressure, evaporation, temperature,
and precipitation. The rest is defined by other variables,
mostly groundwater exploitation by the community where
the position of aquifers in Ngurah Rai area is shallow or
15-20 meters below the face soil. Simultaneous tests
obtained a Feyun of 2.685, with a more negligible probability
of 0.05. This indicates an influence or contribution between
variables of barometric pressure, evaporation, temperature,
and precipitation simultaneously and significantly to
fluctuations in groundwater levels. Therefore, regression
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Figure 2. GWL, 5, and GWL,, in calibration stage (MLR; Ubung)
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Figure 4. GWLaw and GWLprea in calibration stage (MLR: Ngurah Rai)

models on Ngurah Rai monitoring wells could be used to
predict changes in groundwater levels. The partial or
individual test (t-test) obtained a p-value of barometric
pressure and precipitation more significant than 005
(p-value. > 0.05). This implies a significant partial
relationship with fluctuating groundwater levels between
barometric pressure and precipitation variables. In contrast,
the variables of evaporation and temperature do not have a
partially meaningful relationship to fluctuating groundwater
levels. The analysis of the Ngurah Rai monitoring well
showed that the model met all classical assumption testing.
Therefore, the GWL model could be used with unbiased
estimation. The developed regression model was tested using
a calibration test based on data for 36 months from 2017 to
2019 and a verification test for ten months data between
January and October 2015, with RMSE, MSE, and MAE.
The calibration process obtained an MSE value of 0.3740,
RMSE of 0.6116, and MAE of 0.4717. The smaller MSE,
RMSE, and MAE values show a good predictive value in the
calibration process. In contrast, the verification process
obtained an MSE value of 1.3406, RMSE of 1.1579, and
MAE of 09152, This implies a relatively high error rate
between the observation and prediction GWL values. Figure
4 shows the comparison between the GWL observation and
prediction at the calibration stage and Figure 5 at the
verification stage in Ngurah Rai monitoring well.

GWLg, vs GWLiypea

25.000
20.000 —
—
—
15.000 \/_
10.000
5.000
0.000
RS I e
& & S
Sl
—GWLa e GWLpas

Figure 3. GWLobs and GWLpred in verification stage (MLR; Ubung)
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3.3. Artificial Neural Network
2

The groundwater level fluctuations in the aquifer area in
the Denpasar region were modeled using four architecture
variations. The first variation was a 4-4-1 architecture with 4

input variables , 4 neurons hidden layer, and 1 output valﬂale.

The second variation was a 4-8-1 architecture with 4 input

LIRS CRgE

3 I 5.d L = parameter input
™ Hi = hidden layer |
O = output

variables, 8 hidden layer neurons, and 1 outpluariablc. The
third variation was a 7-7-1 architecture with 7 input variables,
7 hidden layer neurons, and 1 output v@blc. The fourth
variation was a 7-14-1 architecture with 7 input variables, 14
hidden layer neurons, and 1 output variable. Variations of
network architecture are shown in Figures 6 and 7.

4-8-1

s

-l

L

T s Ls = parameter input
Hi = hidden layer 1
0 = output

Figure 6. Variations of network architecture (4-4-1 and 4-8-1)

The input parameters for ANN model were selected based
on previous studies using barometric pressure, evaporation,
temperature, humidity, wind speed, bright sunshine, and
groundwater level fluctuation data (GWL) [41]. The
parameters of hydrometeorological variables, including
barometric pressure, evaporation, temperature, humidity,

wind speed, and bright sunshine data, were used
simultaneously as variations of network architecture.
Another  variation used hydrometeorological input

parameters based on data quality test results barometric

pressure, evaporation, temperature, and precipitation

parameters. The data used are hydrometeorology and GWL
data for 36 months from 2017 to 2019, calibration and
hydrometeorology, and GWL data for ten months between
January and October 2015 as verification data.

Groundwater level fluctuations were modeled with the
ANN approach using Matlab R2015a software. The aim was
to facilitate and accelerate analysis to obtain a prediction
model on Ubung and Ngurah Rai monitoring wells for the
groundwater addition area in the Denpasar City aquifer. The
analysis with the ANN approach involved the normalization
process.

T-14-1

5 5 Is = parameter inpat
i ~ hidden layer

© = ourput

Figure 7. Variations of network architecture (7-7-1 and 7-14-1)







This involved data pre-processing or transformation
following the range of activation functions applied, input
data training and testing into the network architecture (4-4-1,
4-8-1, 7-7-1, and 7-14-1), and analysis to obtain the most
optimal results based on the mean value of square error.
Other analysis stages involved obtaining MSE network and
correlation coefficient value (R) stage training, testing, and
validating the overall variation of ANN model. A different
ANN model for each monitoring well was obtained as
follows:

Ubung monitoring well ANN model equation:

C D A B
y_.GWL=>" > Wa_, _cd.(l—exp( D). D W1 _abXy,
e=ld=1 a=1b=1

+H/,'_]_ab.Xp +Wi_y abXg+Wi g abX.p

+B, b) '+B, a7l (©6)

Ngurah Rai monitoring well ANN model equation:

C D A B
y.GWL=Y > Wy_, cd.(I—exp( ), > Wi_| abXy,
c=ld=1 a=1b=1
+Wi_q _ab.Xp +lf’i';'_]_ab.X_‘- +lf’V,'_]_ab.Xhl

+Wi1_ab Xpg+Wi|_ab Xjpm +Wi—1_ab.Xcp

+B by 148, ayl @)

Where GWL = groundwater level, X, = input variable value
of barometric pressure, evaporation, temperature, wind,
bright sunshine, rainfall, and groundwater level, W, =
welght matrix layer-m to layer-n, B, = bias layer-n.

ANN model for Ubung n‘ail()ring well used a network
architecture of 4-4-1 with 4 nput variables, 4 hidden layer
neurons, and 1 output variable. The MSE model obtained a
value of 0.0018388 in the 87" epoch with an overall Ryoge
value of 0.95493. The calibration or training tests obtained
an R of 0.955,R? of 0912, MSE of 0.143, RMSE of 0.379,
and MAE of 0.311. Furthermore, the verification test
obtained an R of 0.891, R20f0.794, MSE of 0.129, RMSE of
0.359, and MAE of 0.319. The 7-14-1 network architecture
provided good values in modeling groundwater level

GWL,,,. vs GWL,,.4
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Figure 8. GWL.. and GWLgreq in calibration stage (ANN 4-4-1; Ubung)

fluctuations in Ubung monitoring well. This is seen from a
Riining value of 09674 and the Riin, value of 0.7635,
implying good reliability in modeling fluctuations in
groundwater levels. The values show the reliability of ANN
model with an architecture of 4-4-1 or 7-14-1 as a model for
predicting fluctuations in groundwater levels in Ubung
monitoring wells. Figure 8 shows the comparison between
the GWL observation and prediction at the calibration stage
and Figure 9 at the verification stage in Ubung well.

ANN model for Ngurah Rai monitoring wells used a
network architecture of 7-14-1 with 7 input variables, 14
hidden layer neurons, and 1 output variable. The MSE model
value was 0.0010372 in the zero epoch with an overall model
R-value of 0.95568. The calibration tests obtained an R of
0.9557,R? 0f 0.9133, MSE of 0.0483, RMSE of 0.2198, and
MAE of (0.1266. In contrast, the verification test obtained an
R of 0.2227, R? of 0.0496, MSE of 0.6621, RMSE of 0.8137,
and MAE of 0.5985. These values show that ANN model
with a 7-14-1 architecture could predict fluctuations in
groundwater levels at Ngurah Rai monitoring well. Figure 10
compares GWL observation and prediction at the calibration
stage and Figure 11 at the verification stage in the Ngurah
Rai well.

The relationship between the GWLgpservaion and the
GWLyprediciion of ANN modeling with the netwoarchitecture
4-4-1 at Ubung monitoring well shows a correlation
coefficient (R) of 0.955 and a coefficient of determination
(R?) of 0.912 at the calibration stage. The verification stage
showed a correlation coefficient (R) of 0.891 and a
coefficient of determination (R?) of 0.794, implying a robust
correlation. The relationship between GWL observation and
prediction of ANN modeling with the networknchitecture
7-14-1 at Ngurah Rai monitoring well produced a correlation
coefficient (R) of 0.9557 and coefficient of determination
(R?) of 0.9113 at the calibration stage (lmining).e results
are different at the verification or testing stage, with a low
correlation coefficient R of 0.2227 and a coefficient of
determination (R?) of 00496. However, the value is still
better than other ANN models, meaning the 7-14-1
architecture predicts MAT fluctuations in the Ngurah Rai
monitoring well.
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Figure 9. GWLon and GW L in verification stage (ANN 4-4-1; Ubung)




GWLgy; V8 GWL1

10.000
£.000
6.000 7_»'_/\/"—\_\_/.
4.000
2.000
0.000
EEENSham®eexcangsso
BEEREAREEREEREERE
Ehe 57 Ll
m— GWLoby s GWLprea
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3. Conclusion

This study aimed to predict groundwater level fluctuation
at Ubung and Ngurah Rai monitoring wells in Denpasar. It
used hydrometeorology data on barometric pressure,
evaporation, temperature, humidity, wind speed, bright
sunshine, and pree)ilalli()n with MLR and ANN models. The
developed ANN model has three-layer structures with one
input layer having four and seven neurons, ()hiddcn layer
with four, seven, eight, and fourteen neurons, and one output
layer. Logistic sigmoid (logsig) and linear transfer function
(purelin) were used in the hidden and output layers as
activation functions for ANN method. The gradient descent
with momentum and adaptive learning rate (traingdx) was
the training algorithm used.

Barometric pressure, evaporation, temperature, humidity,
wind speed, bright sunshine, and precipitation were used as
input parameters to predict groundwater level fluctuation. In
the MLR model, the hydrometeorology parameter was
filtered by a quality data test comprising the consistency,
trend absence, outlier, stationary, and persistence tests. MLR
model obtained R? value of 0.606 for Ubung and 0.257 for
Ngurah Rai. In contrast, ANN model obtained R? value of
0.912 for Ubung and 0.9133 for Ngurah Rai. The results
showed that ANN model has a high R* between the predicted
and the observed groundwater level. Based on the model
performance, MSE, RMSE, and MAE values of ANN model
were lower than MLR. Furthermore, MLR model for Ubung
monitoring well obtained an MSE value of 0.6325, RMSE of
0.7953, MAE of 0.6122. ANN models obtained an MSE
value of 0.143, RMSE of 0379, and MAE of 0.311. The
MLR model for Ngurah Rai monitoring well obtained an
MSE value of 1.3406, RMSE of 1.1579, and MAE value of
0.9152. ANN model obtained an MSE value of 00483,
RMSE of 0.2198, and MAE of 0.1266. This shows that ANN
provides a more efficient prediction model than the MLR
model.

The modeling results showed that ANN is superior to
MLR models. The groundwater level prediction model with
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Figure 11. GWL,;, and GWL ., in verification stage (ANN 7-14-1; Ngurah Rai)

the ANN approaches provides an excellent correlation and
determination coefficient value in Ubung and Ngurah Rai
monitoring  wells. In predicting groundwater level
fluctuation, ANN model is quick, more accurate, and reliable
than MLR due to the account of non-linearities. Also, ANN
1s simple to use due to its power to deal with multivariate and
complicated problems.
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